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Degradation of substituted naphthalenesulfonic acids by
Sphingomonas xenophaga BNG6
A Stolz

Institut ftir Mikrobiologie, Universitédt Stuttgart, Allmandring 31, 70569 Stuttgart, Germany

Sphingomonas xenophaga BN6 was isolated from the river Elbe as a member of a multispecies bacterial culture
which mineralized 6-aminonaphthalene-2-sulfonate. Pure cultures of strain BN6 converted a wide range of amino-

and hydroxynaphthalene-2-sulfonates via a catabolic pathway similar to that described for the metabolism of naph-
thalene to salicylate by Pseudomonas putida NAH7 or Pseudomonas sp NCIB 9816. In contrast to the naphthalene-
degrading pseudomonads, S. xenophaga BN6 only partially degraded the naphthalenesulfonates and excreted the
resulting amino- and hydroxysalicylates in almost stoichiometric amounts. Enzymes that take part in the degradative
pathway of the naphthalenesulfonates by strain BN6 were purified, characterized and compared with the isofunc-
tional enzymes from the naphthalene-degrading pseudomonads. According to the enzyme structures and the cata-

lytic constants, no fundamental differences were found between the 1,2-dihydroxynaphthalene dioxygenase or the
2'-hydroxybenzalpyruvate aldolase from strain BN6 and the isofunctional enzymes from the naphthalene-degrading
pseudomonads. The limited available sequence information about the enzymes from strain BN6 suggests that they
show about 40-60% sequence identity to the isofunctional enzymes from the pseudomonads. In addition to the gene

for the 1,2-dihydroxynaphthalene dioxygenase, the genes for two other extradiol dioxygenases were cloned and
sequenced from strain BN6 and the corresponding gene products were studied. S. xenophaga BNG6 has also been
used as a model organism to study the mechanism of the non-specific reduction of azo dyes under anaerobic
conditions and to establish combined anaerobic/aerobic treatment systems for the degradation of sulfonated azo

dyes. Furthermore, the degradation of substituted naphthalenesulfonates by mixed cultures containing strain BN6

was studied in continuous cultures and was described by mathematical models.
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Introduction Enrichment of strain BN6

arting with an inoculum from the water of the river Elbe
ear Hamburg, Germany, enrichment with 6-aminonaph-
alene-2-sulfonate (6A2NS) yielded a mixed bacterial cul-

Substituted naphthalenesulfonates are important products
the chemical industry and are utilized as dispersants an

intermediates for the production of azo dyes, polymers an ure which utilized 6A2NS as sole source of carbon, energy,

other chemicals [14,38,88]. They are highly water soluble . ; . . ’
and have been identified repeatedly as recalcitrant co itrogen and sulfur. From this mixed culture, which con

pounds i he ervronment [1.48.5556, 100,101 Currenty, 1<% 012 25 o0 dferert bacters species, ol BS
several bacterial cultures are known to degrade (substitute

A2NS. Surprisingly, the strain only converted 6A2NS to
naphthalenesulfonatessomamonas testostero3 was F‘Sn-aminosalicylate, which was excreted in almost stoichio-

obtained from a naphthalene-degrading consortium afte . -~
continuous adaptation to degrade naphthalene—Z—squonatg etric amounts and was utilized by other members of the

This strain grew on naphthalene-2-sulfonate, but not on oculture [69].
substituted naphthalenesulfonates, as the sole source of czr

. axonomic classification of strain BN6
bon and energy [9,10]. Subsequently, enrichments wer train BN6 was originally identified as Rseudomonasp

performed with -6-aminonaphthalene-2-sulfonate, 2-am|-69] but it was soon recognized that, according to the poly-
nonaphthalene-1-sulfonate and naphthalene-2,6-disulfo imine pattern and the presence of ubiquinone Q10, the
ate. These enrichments resulted in the isolation of taxo- P P 4 '

nomically different Gram-negative bacteria which WereStraln belonged to the-subgroup of theProteobacteria

originally classified asPseudomonasp or Moraxella sp and thus was not an authenftseudomonagl1]. Sequen-

. X ! cing the 16S rDNA clearly demonstrated that the strain is
[71-74,96]. One of these isolates, strain BN6, was inten- g ;
sively studied in our laboratory because it oxidized a wide? member of the genuSphingomona$6]. A comparison

. .~ “with sequences from type strains demonstrated that the 16S
range of substituted naphthalenesulfonates. Although it wa . .
originally identified asPseudomonasp, it was recently FDNA sequence from strain BN6 showed the highest degree

. . ; of identity (96%) from all type-strains wit§phingomonas
ﬂlgrgg[%héigiicram BNG is a member of the ge@phingo- yanoikuyae Strain BN6 also differed from other known
e Sphingomonaspecies according to various physiological
characteristics and the pattern of the polar lipids. It was
Correspondence: Dr A Stolz, Institut’ rfuMikrobiologie, Universita therefqre,SUQQeSted j[hat strain BN6' t0g,ether Wlt,h anqther
Stuttgart, Allmandring 31, 70569 Stuttgart, Germany bacterial isolate (strain N,N), which was isolated in Switz-
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and energy [84], belongs to a new species which waseria, strain BN6 utilized only the pyruvate which is
recently described aS. xenophagd9l]. Interestingly, a released by action of thé-Bydroxybenzalpyruvate aldolase
further 16S rDNA sequence in the data bank showed a higand excreted the salicylates formed from the naphtha-
degree of similarity (99%) with the 16S rDNA sequence oflenesulfonates. A similar situation has been described for
strain BN6. This sequence belongs to an isolate (strain C7the degradation of chlorinated dibenzofurans by a bacterial
which was isolated in the USA for its ability to decolorize consortium consisting ddphingomonasp RW16,Pseudo-
aerobically sulfonated azo compounds [29]. This suggestmonas putidaRW10, and some additional strains. In this
that the ability to metabolize sulfonated aromatics may becoculture, theSphingomonastrain converted the chlori-
found more widely spread within the gen8phingomonas nated dibenzofurans to chlorosalicylates which were sub-
Unfortunately, strain C7 seems to be no longer availablesequently mineralized blpseudomonas putid@dW10 [95].
and therefore can not be studied in comparison to straif\nother Sphingomonasp (strain BPSI-3), which was iso-
BN6. lated from a biphenyl-degrading mixed culture, formed a
There are in addition t8phingomonasp BN6 other bac- co-culture with arAlcaligenessp which was more efficient
terial isolates which are also able to grow with (substituted)or the degradation of biphenyl [17].
naphthalenesulfonates [9,10,72-74,96]. Most of these In contrast to all other naphthalenesulfonates which were
strains have not been thoroughly investigated with respeatxidized by strain BN6, 4-amino-, 4-hydroxy- and 5-ami-
to their taxonomic position. Only the naphthalene-2-sulfon-nonaphthalene-2-sulfonate were not converted to the corre-
ate-degrading strairComamonas (Pseudomonas) testos-sponding salicylates (Figure 1). The turnover of 4-amino-
teroni A3 has been identified with sufficient accuracy as aand 4-hydroxynaphthalene-2-sulfonate resulted in accumu-
Comamonasp [9,10,12]. Thus it can be concluded that thelation of the corresponding naphthoquinones in the culture
ability to convert (substituted) naphthalenesulfonates is notnedium. Thus, degradation of 4-amino- and 4-hydroxy-
a unique ability of members of the gen8gphingomonas  naphthalene-2-sulfonates was restricted by rapid autoxi-
dation of the substituted 1,2-dihydroxynaphthalenes formed
The metabolic pathway for degradation of as metabolites. The turnover of 5-aminonaphthalene-2-sul-
naphthalenesulfonates by strain BN6 fonate resulted in the accumulation of 5-hydroxyquinoline-
Resting cells of strain BN6 converted naphthalene-2-sul2-carboxylate, which was presumably formed by an intra-
fonate (2NS) to salicylate (Figure 1), 5-hydroxynaph-molecular condensation reaction of the ring-fission product
thalene-2-sulfonate to 6-hydroxysalicylate, 6-hydroxy-of 5-amino-1,2-dihydroxynaphthalene (Figure 1) [70,71].
naphthalene-2-sulfonate to 5-hydroxysalicylate (gentisate)
and 7-amino- and 7-hydroxynaphthalene-2-sulfonate to thd,2-Dihydroxynaphthalene dioxygenase
corresponding 3-substituted salicylates. The relative activiThe 1,2-dihydroxynaphthalene dioxygenase (DHNDO) of
ties with different substituted naphthalenesulfonates werstrain BN6 was purified to homogeneity, the amino terminal
almost constant after growth in the presence of differenmino acid sequence was determined, and the enzyme was
substrates and inducers. It was therefore concluded that th@ochemically characterized and compared with the iso-
initial attack on the sulfonated naphthalenes was catalysefdinctional enzymes from the naphthalene pathway of differ-
by a highly non-specific enzyme, because a series of disulent Pseudomonasstrains [54]. The enzyme was func-
stituted naphthalene-2-sulfonates and naphthalene-1-sulfotienally and structurally a classical ferrous iron-requiring
ate were also oxidized [70,71]. extradiol dioxygenase similar to those found in various
From the substitution pattern of the salicylates producedpther bacterial genera, includingseudomonasRhodo-
it was concluded that strain BN6 initially attacked the coccusArthrobacterandBacillus[24]. Furthermore, it was
(substituted) napthalene-2-sulfonates by a highly regioshown that the enzyme was apparently not specifically
selective 1,2-dioxygenase, which resulted in a desulfonadapted to the degradation of substituted 1,2-DHNSs,
ation of the naphthalenesulfonates and the formation of thbecause similar conversion rates for substituted 1,2-DHNs
corresponding (substituted) 1,2-dihydroxynaphthalene(sjvere also found with the DHNDOs from naphthalene-
(1,2-DHN). The intermediate formation of 1,2-DHN had degrading pseudomonads. Only the aminoterminal amino
already been described for the degradation of naphthaleracid sequence suggested son@pHingomonaspecific
by authenticPseudomonaspecies [16]. It was therefore traits’. The highest degree of homology was not found with
proposed that further metabolism of the (substituted) 1,2the isofunctional DHNDO fromPseudomonasp PpG7
DHN(s) by strain BN6 was analogous to the known degrad{encoded on plasmid NAH7-14 of 29 amino acids
ative pathway of naphthalene [16,23,99]. Furthermore, difidentical), but with a suspected 2,3-dihydroxybiphenyl 1,2-
ferent enzymes, which had been previously identified in thedioxygenase (2,3-DHBPDO) fronfPseudomonas paucimo-
naphthalene degradative pathway [5,16,21,23]. (1,2bilis’ Q1 (22 of 29 amino acids identical) [54]. It was
dihydroxynaphthalene dioxygenase, 2-hydroxychromene-2ecently shown that, according to its 16S rDNA sequence,
carboxylate isomerase,-Bydroxybenzalpyruvate aldolase strain Q1 is aSphingomonasvhich is closely related t&.
and salicylaldehyde dehydrogenase) (Figure 1) were alsganoikuyae[43]. The 2,3-DHBPDO from strain Q1 also
found in cell extracts or purified enzyme fractions from behaved according to its substrate specificity in a similar
strain BN6 [52,54]. This suggested that the degradativenanner to the DHNDO from strain BN6 [53]. The gene for
pathways for naphthalenesulfonates by strain BN6 and ththe DHNDO from strain BN6 was cloned and sequenced;
naphthalene pathway found in differddéeudomonaspec- the sequence was deposited in the data base of the National
ies converge with 1,2-DHN as the first common metaboliteCenter for Biotechnology Information (Bethesda, MD,
(Figure 1). In contrast to most naphthalene-degrading badJSA; NCBI accession number U65001) [15]. A recent
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Figure 1 Degradation of naphthalene B®seudomonasp NCIB 9816 andPseudomonas putiddAH7 [5,16,23,99] and of substituted naphthalene-2-
sulfonates bySphingomonas xenophadi\6 [51,52,54,69-71]. TCC, tricarboxylic acid cycle.

sequence comparison confirmed that the deduced amirmetween the deduced complete amino acid sequences of the
acid sequence of the DHNDO from strain BN6 has theDHNDOSs from strain BN6 an&®seudomonas putidapG7.
highest degree of similarity (86% identity) with the 2,3-

DHBPDO from strainSphingomonasp Q1 (and also from 2'-Hydroxybenzalpyruvate aldolase

S. yanoikuyaeB1) among all sequences deposited to dateThe 2-hydroxybenzalpyruvate (hydratase-)aldolase
in the data base. In contrast, only 59% identity was foundHBPA) from strain BN6 converted'zydroxybenzalpy-
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ruvate to salicylaldehyde (2-hydroxybenzaldehyde) andection of other extradiol dioxygenases suggested that they
pyruvate (Figure 1). The enzyme also convertéd'2and  were only distantly related to each other and that in contrast
2',6'-dihydroxybenzalpyruvate to pyruvate plus 2,4- andto NahC-BN6 (see above), BphC1-BN6 and BphC2-BN6
2,6-dihydroxybenzaldehyde, respectively. The HBPAsshowed the closest relationships to extradiol dioxygenases
from naphthalene-degrading authentic pseudomonads derfrom other bacterial genera (Figure 2). This suggested that
onstrated a similar substrate specifity as the HBPA fronthe extradiol dioxygenases from the gerfsghingomonas
strain BN6 [51]. Since the aminoterminal amino acid belong to the main groups of extradiol dioxygenases which
sequence of the HBPA (26 aa) was reported [51], the genesre found in a wide range of Gram-negative and Gram-
for (putative) HBPAs have been sequenced frBseudo- positive bacteria.

monas putidaNAH7, three otherPseudomonaspp and

from plasmid pNL1 fromSphingomonas aromaticivorans Plasmid transfer from strain BN6 to other bacterial

F199 [7,8,18,21,80]. A sequence comparison demonstrategienera and transfer of other plasmids to strain BN6

that the relevant deduced amino acid sequences for the anf?reliminary results have been obtained which suggest that
noterminal regions of the HBPAS, encoded by Beeudo- the pathway for the degradation of the naphthalenesulfon-
monasplasmids NAH7 and NPL1 and by straPseudo- ates is encoded in strain BN6 on a 180-kb plasmid which
monassp C18, are almost identical (24 of 26 aa conserved)may be visualized by pulse-field gel electrophoresis (J
This group of sequences showed a lower degree of honKlein, University of Stuttgart, personal communication).
ology (20 of 26 aa conserved) with a sequence obtaine@lasmids of similar sizes have also been proposed to be
from Pseudomonas stutzeAiN10. The sequence obtained involved in the degradation of toluene and naphthalene by
for the HBPA from strain BN6 differed significantly from S. aromaticivoran$199 [89] and fluoranthene (§phingo-

the sequences determined for tAseudomonastrains. In monassp strain EPA505 [6]. Attempts to transfer the ability
each case only 11 of 26 aa were conserved between thie degrade naphthalenesulfonates by classical conjugation
sequence of strain BN6 and those from the pseudomonadgrotocols from strain BN6 to differefRseudomonastrains

The highest degree of homology (65% identity) was foundhave failed. This may indicate th&phingomonaplasmids
between the sequence of the HBPA from strain BN6 anckither do not establish in authentic pseudomonads or that
an open reading frame from plasmid pNL1 fr@dphingo- the relevant genes are not expressed in this genetic back-

monas aromaticivoran§199. ground. Recently, we obtained some evidence that a trans-
fer of the ability to degrade naphthalenesulfonates from

Three different extradiol dioxygenases are encoded strain BN6 to other bacteria is possible. After some years

by strain BN6 of cultivation of the 6A2NS-degrading mixed culture which

During our attempts to clone the gene for the DHNDO, thecontained Sphingomonas xenophag&N6 and some
genes for two other extradiol dioxygenases were identifiedaccompanying bacteria, strain BN12, which completely
in a gene bank of strain BN6. The clones were identified bydegraded 6A2NS, was isolated from this culture. It was
their ability to convert the substrate 2,3-dihydroxybiphenylpreviously suggested that this strain evolved from a 5-ami-
(2,3-DHBP) to the yellow ring-fission product 2-hydroxy- nosalicylate-degrading bacterium (strain BN11) which
6-0x0-6-phenylhexa-2,4-dienoate (HOPDA). In addition togained the ability to convert 6A2NS to 5-aminosalicylate
converting 2,3-DHBP, both enzymes converted variousfrom strain BN6 [68]. Recently, strain BN12 was taxo-
ortho-dihydroxybenzenes (eg catechol, 3-methyl-, 3-isopronomically characterized and shown to be a member of the
pyl-, and 4-chlorocatechol), but with lower activities. Both family Rhizobiaceaevithin the a-subgroup of theéProteo-
enzymes were therefore designated as 2,3-dihydroxybbacteria and identified asPseudoaminobacter salicyla-
phenyl-1,2-dioxygenases (DHBPDO) [36,37]. One of thetoxidans[42]. Although we were not able to repeat the
extradiol dioxygenases (BphC1-BN6) belonged to a grougonjugative transfer of the ability to degrade naphtha-
of extraordinarily small dioxygenases which had been prelenesulfonates from strain BN6 to strain BN11 in the lab-
viously found only inRhodococcus globeruld® andRho-  oratory under controlled conditions, evidence for the trans-
dococcus erythropolisTA421 [3,57]. The corresponding fer of the genes from strain BN6 into the new genetic
gene was expressed in a T7 expression vector and BphChackground was obtained by PCR-amplification and
BN6 was purified from a recombinai. coli strain. The sequencing of the DHNDO gene from strain BN12 (C
protein was a dimer and oxidized, in addition to 2,3-DHBP,Mduller, University of Stuttgart, personal communication).
several other substituted catechols [37]. In contrast to It was a surprising observation that strain BN6 did not
almost all other extradiol dioxygenases, BphC1-BN6 con-convert salicylate or any of the substituted salicylates which
verted 3-chlorocatechol by a newly discovered distal cleavwere formed from (substituted) naphthalenesulfonate(s). It
age mechanism to 3-chloro-2-hydroxymuconic semialiwas therefore attempted to transfer the ability to degrade
dehyde [78]. It was shown that the enzyme was rapidlysalicylate by conjugation from other bacteria to strain BN6
inactivated not only during the oxidation of 3-chlorocate-using plasmids NAH7, pWW60, SAL, pDTG11, pDTGL13,
chol, but also during the turnover of other substituted catpBS211 or pBS244 [83,99]. However, no transconjugants
echols. This inactivation was apparently related to the lossf strain BN6 were obtained which could mineralize salicy-
of the weakly bound ferrous iron, which is the cofactor inlate or naphthalene-2-sulfonate. Surprisingly, the desired
the catalytic center [79]. hybrid strains could readily be constructed if the genes for
A comparison of the deduced amino acid sequences cfalicylate degradation were transferred into cloning vectors
the three extradiol dioxygenases (NahC-BN6, BphC1-BN6derived from the plasmid incompatibility groups IncP-1
BphC2-BN6) with each other and with a representative col{using pRK415) or IncP-4 (using pKT230) [81,82].
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Figure 2 Dendrogram resulting from pairwise alignments of amino acid sequences from various extradiol dioxgenases. Catechol 2,3-dioxygenases
(NahH) fromP. putida(NAH7) [32], Pseudomonas putidat-2 (TOL) (XylE) [64], andPseudomonasp CF600 (pVI150) (DmpB) [87], 1,2-dihydroxy-
naphthalene dioxygenase (NahC) fréseudomonas putiddNAH7) [30], 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) froRseudomonas paucimob-

ilis’ (= Spingomonasp) Q1 [92], 1,2-dihydroxynaphthalene dioxygenase (NahC) from strain BN6 [15], 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC1)
from R. globerulusP6 [3], catechol 2,3-dioxygenase (TodE) frétseudomonas putidal [102], 2,3-dihydroxybiphenyl 1,2-dioxygenases (BphC) from
Pseudomonasp LB 400 [39],P. putidaKF715 [35], andPseudomonasp KKS102 [47], 2,3-dihydroxy-cumate 3,4-dioxygenase (CmtC) frdPseudo-

monas putidaF1l [22], catechol 2,3-dioxygenase (Mpcll) froAlcaligenes eutrophudMP222 [41], 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC2)

from strain BN6 [36], catechol 2,3-dioxygenase (Mpcl) fraNtaligenes eutrophugdMP222 [40], 2,3-dihydroxybiphenyl 1,2-dioxygenases (BphC2,
BphC3) fromR. globerulusP6 [3], and strain BN6 (BphC1) [37].

We were also unable to transfer the ability to degradeDegradation of naphthalenesulfonates in continuous
toluate or 2,4-dichlorophenoxyacetate (2,4-D) by conju-culture by mixed bacterial cultures containing
gation fromPseudomonas putidat-2 or Ralstonia eutro-  Sphingomonas xenophaga BN6
pha JMP134 to strain BN6 [92]. This strongly suggested The degradation of 6A2NS by the mixed culture containing
that the typical degradative plasmids of other Gram-negastrain BN6 was also investigated in continuous chemostat
tive bacteria might not be transferred$phingomonas xen- culture and steady-state data were experimentally deter-
ophagaBN6 but that the relevant genes from these plasimined for the mixed culture and calculated for strain BN6

mids can be expressed in strain BN6. [19,20]. It was shown that the 6A2NS-degrading mixed cul-
ture could be continuously operated with 6A2NS for more
Utilization of strain BN6 to establish a process for than 1.5 years in an airlift loop-reactor when the cells were
the anaerobic/aerobic treatment of sulfonated azo immobilized on sand and that this system was rather stable
dyes to changes in temperature (12-89, pH-shock loadings

The 6A2NS-degrading mixed culture, containing strainand long-term oxygen defaults [19]. The kinetic constants
BN6, was also used to study the possibility of anfor conversion of 6A2NS to 5-aminosalicylate were deter-
anaerobic/aerobic treatment of sulfonated azo dyes, becausgned and a structured model regarding interspecies trans-
under anaerobic conditions cells of strain BN6 reduced sulfer of 5-aminosalicylate was developed. By these methods
fonated azo dyes to the corresponding amines [34,49]. Thia low vyield coefficient (0.044 g, mmol?* 6A2NS) and a
ability had been described for a number of other bacteridigh maintenance coefficient (0.82 mmggks h™ gem™)

from different taxonomic groups [13,94]. A complete min- were calculated. It was suggested that these values were
eralization of sulfonated azo compounds could be achievedue to the fact that strain BN6 only utilizes one mol of
after the anaerobic cleavage of the azo bond because tipyruvate per mol of 6A2NS converted [20].

mixed culture with strain BN6 mineralized a wide range

of substituted naphthalenesulfonates after reaeration [34Jre there any general adaptation strategies which
Recently, it was shown that the ability of strain BN6 to allow Sphingomonas strains to degrade a wide

reduce azo dyes non-specifically under anaerobic cornrange of xenobiotic compounds?

ditions was enhanced by metabolites formed during aerobithe genusSphingomonasgs attracting increasing interest
metabolism of naphthalenesulfonates, which acted as reddecause various xenobiotic-degrading bacterial isolates
mediators and shuttled redox equivalents from the cells tdelong to this group of organisms. In addition to nap-
the extracellular azo dyes [44,50]. thalenesulfonates, members of this genus are able to
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degrade compounds such as biphenyl, naphthalene arganization of degradative genes. Previous studies with
pyrene [4,45,98], diphenylether and dibenzdioxin  authentic pseudomonads suggested that the genes which
[61,85], herbicides and pesticides [26,62,65], polyethylenencode catabolic enzymes are often organized in operons
glycols [93], and chlorinated phenols [43,66,67]. and are coordinately regulated. Classical examples for this
Comparative studies between enzymes of the naphthare themetacleavage pathways from the TOL- or NAH-
lene pathway from differenPseudomonasp and the iso- plasmids, theortho-cleavage pathways for chlorocatechols
functional enzymes from the naphthalenesulfonic acid pathfrom various plasmids or the chromosomally encogkd
way from Sphingomonasp BN6, as well as comparison ketoadipate pathway [25,31,33,99]. There is growing evi-
of the extradiol dioxygenases from strain BN6 with thosedence that the genes for catabolic pathwaysSphingo-
of different sources, suggest that there are no fundamentahonasstrains are often organized so that they are physi-
differences in the degradative pathways and the enzymesally separated from each other or are at least not organized
involved between the geni&phingomonaand other gen- in coordinately regulated operons. This appears to be the
era of Gram-negative bacteria. Similar results have als@ase for the genes involved in the degradationydfexa-
been obtained for the extradiol dioxygenases which arghlorocylohexane (lindane) byS. paucimobilis UT26
involved in the degradation of compounds such as piphenytﬁo,ag], protocatechuate b$. paucimobilisSYK-6 [58],
naphthalene and toluene bgphingomonas yanoikuyae naphthalene, biphenyl, and toluene By yanoikuyaeB1
strain B1 [46]. andS. aromaticivorang199 [80,103], dibenzg-dioxin by
Generally the degree of homology between the genes fogphingomonasp RW1 [2], and was recently observed for
degradative enzymes from sphingomonads and authentife genes involved in the metabolism of naphthalenesul-
pseudomonads seems to be lower than that within the gengsnic acids in strain BN6 (A Keck and J Klein, University
Sphingomona®r the genusPseudomonasThis becomes ¢ Stuttgart, personal communication).
evident when hybridization studies are performed, even |4 contrast to the examples mentioned above, there are

under conditions of low stringency. Thus no signal wasg|sq some ‘traditional degradative operons’ foundjshin-
obtained when a labeled probe of plasmid NAH7 '5°|atedgomonasspp. For example, the gene for BphC2-BN6 is
from Fseudomonas putidwas rr]\ybrldlzeq r\:‘”th the thtal apparently part of an operon, which also includes genes
DNA from strain BN6 [90]. Furthermore, it has been found oy ding"a hydrolase and an isomerase or decarboxylase
that among a collection of 2,4-dichlorophenoxyacetate (2,434 \hich is accompanied by a regulatory gene, which is
E)Bd%gradm%hsdqllc?tes,tthSptTmg;)monastramfstr(]jld2n2tD transcribed in the opposite direction [36; unpublished
yoridize wi imerent probes for genes ot the 4~ " results]. Furthermore, the carbazole degradative pathway

degradative pathways prepared frdRalstonia eutropha : : :
pJP4 [27]. Similarly, no signal was observed with a probefrom Sphingomonasp CB3 resembled, according to its

. t, the biphenyl loci of different pseudo-
repared from the gene of the 2,3-DHBPDO fr&mphingo- gene arrangemen ; .
pmoﬁassp Q1 (formgerIyPseudomonas paucimo?i%l)gin monads [86]. It could be hypothesized that in these cases,
a hybridization experiment with DNAs prepared from a Ser_the relevant genes have (_)nly recently been transferred from
ies of other biphenyl-degrading bacteria [28]. th%r ?aﬁte”? to thri spr\lllirég?]moqﬁdts. fructur f the or
The hybridization studies and the limited comparative ' "€'€ IS iSO Some €vidence that structures ot tne pro-

sequence information currently available suggest that thergioters o;Stph;Egomopaﬁ]eneé are cons;der%blytdl.ffergnt
are some restrictions which limit the transfer of DNA from 0Mpared to those ot other Lram-negalive bacteria. rser

sphingomonads to otheProteobacteriaand likewise the ~and coworkers analysed the start of transcription for three
transfer of DNA from other bacteria to sphingomonads.9€nes which encode proteins that are involved in the degra-
One of the reasons for the differences between the gend@tion of pentachlorophenol i§phingomonas chiorophen-
encoding degradative abilities from sphingomonads ang!ica (formerly Flavobacteriumsp) ATCC 39723. They
‘typical’ xenobiotic-degrading isolates from the or - |dent|f|gd the t(anscrlptlonal starting points at'p05|t|06§’
subgroup of theProteobacteria(eg Alcaligenes Ralstonia to —91 in relation to t_he translathnal start sites and_were
or Pseudomonass probably the host-range of the degrad-usually not able to identify ‘typical’ promoter regions
ative plasmids present in these strains. As mentioned abowPstream of the transcriptional start sites [75-77,97]. This
we have repeatedly tried to transfer various degradativ&'ay explain whySphingomonagenes often seem to be
plasmids to strain BN6, but in no case were we able tgarely or insignificantly expressed from their own pro-
establish the corresponding phenotype in strain BN6. Furoters after their transfer to other genera.
thermore, we were also unable to transfer the ability to Thus, the main difference between authentic pseudomon-
degrade naphthalenesulfonates from strain BN6 to othe?ds, as the ‘classical’ xenobiotic-degradiPgteobacteria
bacteria. Similarly, McGowaret al [59] were not able to and the sphingomonads identified today is the different
transfer the ability to degrade 2,4-D from differ@phingo- ~ organization of the participating genes. Presumably, these
monasstrains toBurkholderia cepacialn contrast to these differences are also reflected in different regulatory mech-
degradative plasmids, antibiotic resistance plasmids such @&isms. A tempting hypothesis is that the organization of
RP4 or derivatives thereof are transferred with high fre-the genes in small units perhaps allows Sghingomonas
guencies into strain BN6 [90] and may be able to cotransfestrains to reorganize the genes which together form a
other genes with low frequencies to and out of strain BN6édegradative pathway more rapidly than other bacterial
and other sphingomonads. strains and that therefore the sphingomonads are especially
Currently, the main obvious difference betwegphingo-  suitable for adaptation to new xenobiotic compounds in
monassp and other Gram-negative bacteria is the differenthe environment.
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